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Abstract

We present a nonlinearly implicit, conservative numerical method for integration of the single-fluid resistive MHD
equations. The method uses a high-order spatial discretization that preserves the solenoidal property of the magnetic field.
The fully coupled PDE system is solved implicitly in time, providing for increased interaction between physical processes as
well as additional stability over explicit-time methods. A high-order adaptive time integration is employed, which in many
cases enables time steps ranging from one to two orders of magnitude larger than those constrained by the explicit CFL
condition. We apply the solution method to illustrative examples relevant to stiff magnetic fusion processes which chal-
lenge the efficiency of explicit methods. We provide computational evidence showing that for such problems the method
is comparably accurate with explicit-time simulations, while providing a significant runtime improvement due to its
increased temporal stability.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation

The design of next-generation magnetic fusion devices requires increased understanding of nonlinear mac-
roscopic stability, reconnection processes and refueling approaches for burning plasmas. Due to the high cost
of conducting physical experiments of these processes in magnetic fusion devices, researchers are increasingly
turning to computational simulation as a tool for such scientific investigation. However, it is well known that
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the numerical modeling of magnetic-confinement fusion systems is one of the most challenging problems in
contemporary computational physics. This is a result of many factors, including the complexity of models that
accurately represent burning plasmas, as well as the resolution of the large range of spatio-temporal scales at
which significant physical processes occur. A key result of temporal stiffness is that traditional explicit meth-
ods used for solution to such models may experience prohibitively small time step restrictions compared to the
dynamical scales of macroscopic stability and plasma fueling.

In this work, we propose a fully implicit numerical approach for solving the single-fluid, resistive magne-
tohydrodynamic equations which constitute one of the relevant models describing burning plasma processes at
the device scale. We root our implicit numerical methods in a Backwards Differentiation Formula–Newton–
Krylov solution framework. There are many attractive qualities of such numerical techniques for these prob-
lems, including their resolution of nonlinear couplings between the disparately evolving internal physical pro-
cesses and their increased temporal stability compared to traditional numerical solution methods for these
problems.

A true description of plasma motion must rely on kinetic equations for each plasma species. As this
approach is too costly for simulation of full magnetic fusion devices, a fluid description of the plasma is often
used. This description is obtained by taking velocity moments of the kinetic equations describing a plasma
under certain closure assumptions and the assumptions of large collisionality (see [1] for details). Magnetohy-
drodynamics, or MHD, is the term given to a single fluid description of a plasma in which a single velocity and
pressure describe both the electrons and ions. This approximation is distinguished from two-fluid MHD in
which electrons and ions retain separate pressures and velocities. The simplest MHD model is that of ideal
MHD, which ignores the diffusion terms arising from collisions, assuming that these effects are negligible com-
pared with other terms. When these diffusion terms are retained, the mathematical model is referred to as sin-

gle-fluid resistive MHD, which is the primary focus of this paper. While single-fluid resistive MHD may be
considered to be one of the simplest models used to describe plasma dynamics, it is nonetheless rich in math-
ematical structure and has been successfully employed to simulate physics at the device-scale [2,3]. We note
that there have been a number of recent developments in the literature that are based on related physical mod-
els incorporating simplifications and/or incorporation of additional physical processes. An oft-used approxi-
mation of the MHD system in the presence of a strong magnetic field is to constrain the plasma
compressibility in the direction perpendicular to the field. This asymptotic expansion results in simplified sets
of modeling equations, and is generally referred to as reduced MHD. Additional processes that have been
modeled are two-fluid effects including the Hall term and electron pressure gradients, under the umbrella of
extended MHD [4].

In particular, we are interested in resistive MHD modeling of tokamaks, magnetic fusion devices in a toroi-
dal confinement configuration having a strong background toroidal magnetic field. In the MHD modeling of
tokamaks (and other confinement configurations), the numerical difficulties stem from: (1) a wide range of
space scales, (2) a wide range of time scales, and (3) a large anisotropy induced by the background magnetic
field. The presence of a large background field and toroidal geometry separates the effective speeds of the
MHD waves into three branches, each with characteristic wave speeds that differ from one another by approx-
imately an order of magnitude. Thus, if the characteristic transit times of the fast magnetosonic wave, the
shear Alfvén wave, and the slow magnetosonic wave are denoted sF, sA and sS, these satisfy sF� sA� sS.
We are specifically interested in problems where the physical processes under study occur on the sA time-scale,
or slower. Thus, for explicit methods whose time step is restricted by the CFL condition to be at the sF time-
scale, the calculation will require an excessive number of time steps for resolution of the relevant physical pro-
cesses. Our motivation to develop a Newton–Krylov technique for implicit integration of the resistive MHD
equations stems from the desire to follow the dynamics relevant to these physical problems of interest and not
the sF time scale restriction. Thus, this work is mainly concerned with addressing the second issue mentioned
above, i.e., the wide range of time scales. We also note that Newton–Krylov techniques have been demonstra-
bly successful in the implicit solution of similarly stiff physical systems, such as the Navier–Stokes equations,
radiation hydrodynamics and a variety of other applications [5–7].

This paper is organized as follows. In the next subsection we briefly review previous work on different time
approaches to MHD modeling. Section 2 introduces the single-fluid resistive MHD equations, and our numer-
ical methods are described in Section 3. We then present results on a suite of test problems designed to verify
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the numerical method and to demonstrate the usefulness of our approach on physical problems of reconnec-
tion and plasma fueling. Concluding remarks follow in Section 5.

1.2. Survey of other work

In this section we present a brief survey of related work. In general, time advancement for the numerical
solution of MHD equations falls under three categories: (a) explicit, (b) semi-implicit, and (c) fully implicit
methods. Explicit methods have been favored among the community that deals with MHD flows in the pres-
ence of shocks (e.g. the space-weather community [8], and others [9,10]). In these physical regimes, nonlinear
phenomena at time scales comparable to the fast time scale need to be studied. In such applications, there is no
separation of scales between the interesting physical processes and the fast time scale sF, so explicit methods
prove to be efficient and adequate for such simulations.

For problems in which there is a significant separation of physical scales, however, alternate methods must
be chosen. For such problems in which stability limits the utility of explicit-time methods, one traditional
approach has been semi-implicit methods. These methods have been developed to treat the (usually linear)
diffusion terms implicitly while explicitly treating the (nonlinear) hyperbolic portion of the resistive MHD
equations (for example, see [11]). These kinds of semi-implicit methods are useful to integrate over the time
stepping constraints imposed by the diffusion terms when resolving near-singular current layers or when some
form of fast heat conduction is present. Other semi-implicit methods have treated not only the diffusion terms
implicitly, but also the fast compressive magnetosonic waves. The CFL stability condition in such implemen-
tations is generally restricted to those imposed by the shear Alfvén waves. Examples of this type of method can
be found in the work of Park et al. [2] and Harned and Kerner [12]. The semi-implicit method proposed by
Harned and Schnack [13] went one step further and included implicit treatment for the shear Alfvén waves.
Another semi-implicit approach to the resistive MHD equations was used by Tokman and Bellan [14] in which
they linearized the MHD system and solved the resulting linearly implicit system using exponential propaga-
tion iterative techniques. This solution method allowed for increased accuracy and solver efficiency over other
semi-implicit techniques.

We now turn our attention to the class of implicit time stepping methods generally referred to as fully impli-
cit methods. We distinguish the fully implicit methods from the so-called ‘‘linearly implicit’’ methods. An
excellent example of the latter work is that of Jardin and Breslau [15] wherein the right hand side of the equa-
tions written in semi-discrete form is expanded in a Taylor series about the previous time step retaining only
terms which are first order in the time step. Thus, these linearly implicit methods are akin to a single Newton
iteration of the fully implicit Newton–Krylov methods. In fully implicit methods, on the other hand, each time
step requires solution of a nonlinear problem. A nonlinear implicit difference scheme for resistive MHD, devel-
oped by Jones et al. [16], used an approximate LU decomposition and a Gauss–Seidel iterative technique for
solution of the linear systems resulting from the implicit operator. This implementation was somewhat unique
because the hyperbolic terms were treated by an upwind flux-vector splitting scheme, whereas in previous
work these terms have been computed using standard central difference methods. The examples in their paper
were of somewhat modest complexity: a 1D unsteady Riemann problem that was solved explicitly, two steady-
state 2D examples, and one example in 1D that was solved implicitly. Their 1D unsteady example exhibited a
speed up of approximately three compared with the explicit computation.

The recent work by Chacón et al. [17] on the development of an implicit nonlinear resistive MHD solver is
perhaps most closely related to our effort. They employed a matrix-free, preconditioned Newton–Krylov
approach to solve the reduced MHD equations in 2D. They chose a second order Rannacher time stepping
approach [18,19], a variant of Crank–Nicholson time stepping which damps high-frequency errors. The
speed-up afforded by their implicit method over an explicit one ranged from approximately four (for a 642

mesh) to eight (for a 2562 mesh). Chacón and Knoll [20] have also developed an implicit solver for Hall
MHD in 2D, although slightly simplified through use of the reduced MHD approximation. In the Hall
MHD case, the stiffness results from the Whistler waves, which obey a quadratic dispersion relation, and
hence very small explicit time steps. Compared with their implicit results for single fluid resistive MHD the
Hall MHD simulations yielded a larger speedup (ranging from 4 to 30) of the implicit solver compared with
the explicit one.
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In this work, we develop a fully implicit numerical method for single-fluid resistive MHD, which can be
extended for simulating large magnetic fusion devices such as ITER. Similarly to the approach by Chacón
et al., we employ a matrix-free, Newton–Krylov technique. Additional contributions of this work are that
we use the more general compressible MHD formulation, we allow variable spatial accuracy from second
to fourth order, our time integration allows for adaptive step and adaptive order BDF methods, and our
verification includes 3D examples computed in parallel. One concern with the use of fully implicit tech-
niques is that the linear system solves that are required in these methods can be very costly for large prob-
lems. Thus, we include large-scale 3D results demonstrating that these systems can be scaled appropriately
for problems of physical interest. We note that in this paper we do not include Hall or two-fluid MHD
effects.

The time-evolution approach taken in this work relates closely to the work of Rognlien et al. [21], in that we
make use of the implicit ODE solver CVODE for MHD simulations. However, their work studies a demonstra-
bly different regime of confined plasmas, that of edge-physics, through solving the Braginskii form of the
MHD equations by splitting the system into two separate systems comprised of a (3-D) edge-plasma transport
problem and a (2-D) plasma profile evolution. It is due to the differences in problem regime, as well as our fully
coupled approach, that this work contributes to the field of implicit solutions for compressible, resistive MHD
simulations.

2. Governing equations

The single-fluid resistive MHD equations couple the equations of hydrodynamics and resistive Maxwell’s
equations and may be written below in conservation form:
oU
ot
þr � F ðUÞ ¼ r � F dðUÞ; ð2:1Þ
where the solution vector U ” U(x, t) is,
U ¼ fq; qu;B; egT
;

and the hyperbolic flux vector F(U), and the diffusive fluxes Fd(U) are given by
F ðUÞ ¼ qu; quuþ p þ 1

2
B � B

� �
I� BB; uB� Bu; eþ p þ 1

2
B � B

� �
u� BðB � uÞ

� �T

;

F dðUÞ ¼ 0; Re�1�s; S�1ðgrB� gðrBÞT Þ; Re�1�s � uþ c
c� 1

j
RePr

rT þ g
S

1

2
rðB � BÞ � BðrBÞT

� �� �T

:

In the above equations, q is the density, u is the velocity, B is the magnetic field, p and T are the pressure
and temperature, respectively, and e is the total energy per unit volume of the plasma. The plasma prop-
erties are the resistivity g, the thermal conductivity j, and the viscosity l, which have been normalized,
respectively, by a reference resistivity gR, a reference conductivity jR, and a reference viscosity lR. The ratio
of specific heats is denoted by c and taken to be 5/3 throughout this work. The non-dimensional parameters
in the above equations are the Reynolds number, defined as Re ” q0U0L/lR, the Lundquist number, defined
as S ” l0U0L/gR, and the Prandtl number, denoted by Pr, which is the ratio of momentum to thermal dif-
fusivity. The non-dimensionalization is carried out using a characteristic tokamak length scale, L, and the
Alfvén speed U 0 ¼ B0=

ffiffiffiffiffiffiffiffiffi
l0q0

p
, where B0, q0, and l0 are the characteristic strength of the magnetic field, a

reference density and the permeability of free space, respectively. The equations are closed by the following
equation of state
e ¼ p
c� 1

þ q
2

u � uþ 1

2
B � B;
and the stress tensor is related to the strain as
�s ¼ lðruþ ðruÞT Þ � 2

3
lr � uI:
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Finally, a consequence of Faraday’s law is that an initially divergence-free magnetic field must lead to a diver-
gence-free magnetic field for all times, which corresponds to the lack of observations of magnetic monopoles
in nature. This solenoidal property is expressed as $ Æ B = 0.

3. Methods

In this section, we discuss the spatial and temporal discretization techniques used in our implicit solution
approach. In addition, we present the nonlinear and linear solvers used, as well as our techniques for adaptive
temporal error control.

3.1. High-order spatial discretization

The domain is discretized using finite volumes that are indexed with an n-tuple ((i, j) in 2D and (i, j,k) in
3D), and the conserved quantities are stored at cell centers. Each finite volume is bound by faces indexed
as ði� 1

2
; j; kÞ and so on. We discretize the divergence of the fluxes in (2.1) as
of
ox

� �
i;j;k

¼
~f iþ1

2;j;k
� ~f i�1

2;j;k

Dx
; ð3:1Þ
where f may represent either the hyperbolic or the diffusive fluxes, and Dx is the mesh spacing in the x-direc-
tion (assumed uniform). The quantity ~f iþ1

2;j;k
is referred to as the numerical flux through the face fiþ 1

2
; j; kg,

and is computed as a linear combination of the fluxes at cell centers as
~f iþ1
2;j;k
¼
Xn

m¼�m

amfiþm;j;k: ð3:2Þ
Our numerical framework provides the flexibility of using any of a group of different spatial discretization
schemes. For a second-order central difference implementation, m = 0, n = 1 and a0 ¼ a1 ¼ 1

2
; for a fourth-or-

der central difference approximation, m = 1, n = 2, and a�1 ¼ a2 ¼ � 1
12

, a0 ¼ a1 ¼ 7
12

; and for tuned second-
order central differences, a�1 = a2 = �0.197, a0 = a1 = 0.697 [22]. These central difference approximations
are free of dissipation errors, except perhaps near domain boundaries. They do, however, suffer from disper-
sion errors. Consequently, physical phenomena that are not well resolved can suffer from ringing. The disper-
sion errors can be minimized by using schemes such as the tuned-second order scheme, mentioned above,
which has lower dispersion error than the central difference schemes. The numerical approximation to the
divergence $ Æ B is written as
r � B ¼
eBx

iþ1
2;j;k
� eBx

i�1
2;j;k

Dx
þ
eBy

i;jþ1
2;k
� eBy

i;j�1
2;k

Dy
þ
eBz

i;j;kþ1
2
� eBz

i;j;k�1
2

Dz
þ OðDxpÞ þ OðDypÞ þ OðDzpÞ; ð3:3Þ
where Ba is the a-component of the magnetic field, the terms eBa are evaluated as shown in Eq. (3.2), and p is
the order of the spatial derivatives. If the numerical approximation of $ Æ B is ensured to be zero at t = 0 then
it can be easily shown that the numerical fluxes, as computed above, ensure that the solenoidal property of the
magnetic field in the discrete sense is automatically satisfied, which for explicit schemes, guarantees satisfac-
tion of the solenoidal magnetic field in time.

3.2. High-order adaptive time discretization

As previously discussed, we employ high-order implicit methods for time integration of the system (2.1), in
order to accurately evolve the system along the dynamical time scales of interest.

3.2.1. Implicit BDF method
For our time integration method, we use the parallel ODE solver CVODE [23,24], developed at Lawrence

Livermore National Laboratory and based on the VODPK package [25]. CVODE employs the fixed-leading-
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coefficient variant of the Backward Differentiation Formula (BDF) method [26,27] and allows for variation in
the order of the time discretization, as well as in the time step size.

The methods in CVODE are Predictor–Corrector in nature, so each time step begins with the calculation of an
explicit predictor giving a first approximation to the solution at the new time level, Un(0). An implicit corrector
is then employed to solve for the time step solution, Un. Writing the original system (2.1) as
oU
ot
¼ gðUÞ; ð3:4Þ
these methods are based on equations of the form
Un � Dtnbn;0gðU nÞ �
Xq

i¼1

½an;iU n�i þ Dtnbn;igðU n�iÞ� ¼ 0;
where Uj = U(tj) are the recent time-discretized states, the value of q defines the BDF order (between 1 and 5),
and the coefficients an,i and bn,i are uniquely determined by q and the recent history of step sizes Dtn = tn � tn�1

(see [27,28]). At each time step, the multidimensional nonlinear system
GðU nÞ � U n � Dtnbn;0gðUnÞ �
Xq

i¼1

½an;iU n�i þ Dtnbn;igðU n�iÞ� ¼ 0 ð3:5Þ
must be solved to determine the time-updated solution Un. For solution of this system, we employ an inexact
Newton–Krylov method [29], described in Section 3.2.2.

Within the CVODE time integration and solvers, we scale the unknowns in order to better handle the mul-
tivariable coupled systems. Thus, we include an absolute tolerance (ATOL) for each unknown and a relative
tolerance (RTOL) applied to all unknowns. These tolerances are then used to form a weight that is applied
to each solution component during the time step from tn�1 to tn. This weight is given as
wi ¼ rtol � jUij þ atoli; ð3:6Þ

and then the weighted root mean square norm
kUk
wrms
¼ N�1

XN

i¼1

ðU i=wiÞ2
" #1=2

; ð3:7Þ
where N is the total number of unknowns in the system (in our case, eight · the number of spatial grid points),
is applied on all error-like vectors within the solution process. The weight wi represents a tolerance in the com-
ponent Ui, so a vector whose WRMS norm is 1 is regarded as ‘‘small’’.

3.2.2. Newton–Krylov nonlinear solver

The nonlinear systems (3.5) are solved using an inexact Newton–Krylov solver. Newton’s method provides
a standard, efficient solution technique for systems of nonlinear equations, where at each iteration m the state
Un(m) is updated as the solution to a local linear model of the residual G(Un(m)):

Iterate over m:

(i) Solve (approximately): M(Un(m))dU(m) = �G(Un(m)), where M(U) � I � cJ(U), J(U) = oG(U)/oU, and
c = Dtnbn,0,

(ii) Update: Un(m+1) = Un(m) + dU(m).

It is widely known that nonlinear solution methods benefit tremendously from accurate initial guesses,
Un(0). In this work, the explicit predictor is used as an initial guess to the implicit nonlinear system. Thus,
the initial guess uses a collection of available time-level states Un�i already stored for determining the system
(3.5). The effect of this predictor on the implicit solver is discussed in Section 4.2.

To solve the linear systems in step (i) above, we rely on a scaled, non-restarted GMRES iterative solver [30].
Such linear solvers prove quite efficient for large-scale problems since they do not require storage of the matrix
M, only its action in matrix-vector products. Approximations to these products are applied based on the
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observation that the Jacobian action can be approximated by finite differences of the nonlinear function
around the current state U,
MV ¼ ðI � cJÞV � V � c½GðU þ rV Þ � GðUÞ�=r;
where the increment r is given by 1=kV k
wrms

so that the product rV has norm 1.

3.2.3. Local temporal error control

A critical part of the time evolution method is its adaptive control of local error. We include brief com-
ments on how this strategy works here, and we refer the reader to [23] for more details. At every time step,
the local truncation error (LTE) is estimated and required to satisfy tolerance conditions such that
kLTEk
wrms
6 1: ð3:8Þ
In CVODE, if this test passes, the step is considered successful. If it fails, the step is rejected, a reduced step size
Dt 0 is attempted, and the error test is repeated. If it fails three times, the order q is reduced (if q > 1) or the step
is restarted from scratch (if q = 1). In addition to adjusting the step size to meet the local error test, the solver
periodically adapts the BDF method order with the goal of maximizing the step size Dt. The integration begins
at order 1 and varies the order dynamically to pick the order q for which a polynomial of that order best fits
the discrete data involved in the multistep method.

Within each of these time steps, Newton iteration is used to solve the nonlinear system (3.5). The stopping
test for the Newton iteration is related to the local temporal error test and attempts to keep the nonlinear
system errors from interfering with the local error control. We set the Newton convergence (stopping) test
as
RkdU ðmÞk
wrms

< 0:1�;
where R is a current estimate of the convergence rate, dU(m) is the Newton correction for iteration m, and � is
an estimate of the local solution error [23]. If at any iteration, kdU ðmÞk

wrms
=kdU ðm�1Þk

wrms
> 2 with m > 1, we

consider the method divergent and reduce the time step by a factor of 4.
Within the Newton iteration, the linear system solution errors must also be controlled. We measure these

errors with the linear residual vector and attempt to ensure that the linear iteration errors do not interfere with
the nonlinear and local integration error controls by requiring that the norm of the linear residual be less than
5% of 0.1�, i.e., 0.005�.

The various algorithmic features of the solver described above are documented in [25,26] and summarized
in [23,24].
4. Computational results

In this section, we present numerical results using the high-order space (fourth-order central difference) and
time (implicit BDF) solution approach from Section 3. We compare this method with a fourth-order-accurate
explicit-time Runge–Kutta method based on the same spatial discretization. In these comparisons, we seek to
demonstrate the correctness of the computed results and the benefits of the implicit-time approach for both
solution accuracy and computational speed when dealing with stiff resistive MHD systems. We note that
all of the following results are in dimensionless form, using the non-dimensionalization discussed in Section 2.

These results are examined on a suite of three problems, each designed to test a different aspect of the
method. In Section 4.1, we consider a 2D linear wave propagation test having analytical solution, which
we use to demonstrate the high accuracy of our spatial and temporal schemes. The second example, in Section
4.2, is a stiff 2D reconnection problem that has been the subject of intense study in the literature [31]. With this
example, we verify the correctness of solutions to the single-fluid resistive MHD model, as well as examine the
efficiency of the implicit approach. In Section 4.3, we demonstrate the performance of our methods on a large-
scale, 3D pellet injection problem.

Unless otherwise noted, all of the following implicit-time computational results use the solver parameters
detailed in Table 1.



Table 1
Default parameters used in the implicit-time and nonlinear solution methods

Parameter Value

Absolute tolerance on solution 10�11

Relative tolerance on solution (RTOL) 10�7

Maximum BDF method order 5
Maximum Newton iterations/time step 3
Maximum GMRES iterations/Newton iteration 5
Nonlinear tolerance coefficient 0.1
Linear tolerance coefficient 0.05
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4.1. 2D Linear wave propagation tests

The first test is a 2D linear wave propagation problem. Here, we test the method using the purely hyperbolic
portion of the MHD system (2.1), usually referred to as the equations of ideal MHD, by taking Fd(U) ” 0. In
this problem, the domain is the square [0,2] · [0,2], having periodic boundary conditions on all sides. The ini-
tial conditions are set up as follows. Writing the ideal MHD equations in quasilinear form suitable for wave
propagation along a direction n = kxx + kyy,
oU
ot
þ An

oU
on
¼ 0;
where U = {q,u,v,Bx,By,p}T, we begin with a constant equilibrium state, denoted as U0, and project this state
on to the characteristic space by taking the inner product of U0 with the left eigenvectors of the matrix An(U0).
Thus the k-th equilibrium characteristic variable is written as W0,k(U0) ” (lk(U0),U0), where lk is the k-th left
eigenvector of An(U0). The l-th wave is then initialized by perturbing only the l-th characteristic variable, i.e.,
Wk(x,y, 0) = W0,k (U0) + dkl �cos (kxx + kyy), where dkl is the Kronecker delta function. The perturbed char-
acteristic variables are then projected back to physical space by multiplying Wk with the right eigenvectors of
An(U0). In order to simulate a stiff physical system, the amplitude of perturbation is 10�5, the l-th wave is cho-
sen to be a slow magneto-acoustic wave moving obliquely at 45 � (kx = ky) to the mesh, with the magnetic field
aligned at 89.5 � to the direction of propagation. To mimic wave propagation in a low-beta plasma, the initial
equilibrium beta is chosen to be b ” 2p/|B|2 = 0.02. Under these initial and boundary conditions, the linearized
time-dependent wave propagation problem has an analytic solution which can be compared with the com-
puted nonlinear solution. (We hasten to add that the small perturbation amplitude ensures that the waves
propagate almost linearly, with nonlinear effects of Oð�2Þ.) Hence, we use it to analyze the accuracy of the spa-
tial and temporal numerical methods.

In Fig. 1, we show the error in a typical pressure wave solution computed using the explicit method and the
implicit method with varying tolerances for a number of spatial discretizations. These errors are computed at
times t = 5000Dtexp, through comparing the computed pressure waves with the analytical solutions. As
expected, as the implicit tolerance is tightened the solution accuracy increases, down to the high-order spatial
discretization resolution. We also note that choosing weaker tolerances significantly degrades the solution
accuracy, as seen from the implicit curve at RTOL = 10�6.

In Fig. 2, we compare the scaled runtimes required to propagate the simulation to a time of t = 100 for the
explicit and implicit methods, under a variety of spatial meshes. For this and the following examples, we plot
the scaled runtime as the total CPU time divided by the spatial mesh size, to provide a measure of the work
performed due to the time evolution method only (thus, a perfect integration method would exhibit a horizon-
tal line, i.e., constant work per mesh point). We note that for the explicit-time method, satisfaction of the CFL
stability condition results in doubling this scaled time with each spatial refinement; whereas the implicit
method has no stability restriction on the time step. The resulting plot shows increasing benefit with the impli-
cit approach, which is expected due to the stiff behavior built into this problem.

In Fig. 3, we show the propagation of the pressure wave, using a 128 · 128 spatial mesh. Here, we plot the
values of p along the diagonal cross-section of the 2D plane, i.e., along y = x. These values are plotted for both
the explicit and implicit method (RTOL = 1e � 7) at the initial time of t = 0 and further along in time at t = 250.



256x256128x12864x6432x32
10

10

10

10

10

Mesh Size

S
ol

ut
io

n 
E

rr
or

Pressure Wave Solution Accuracy (at t=5000*Δt
exp

)

explicit

Fig. 1. For tight-enough solver tolerances, the implicit method captures the linear wave solutions at least as well as the explicit-time
method.

256x256128x12864x6432x32
10

1

10
2

10
3

10
4

Mesh Size

S
ca

le
d 

C
P

U
 T

im
e

Scaled CPU Times on Linear Wave Problem to t=100

Explicit

Fig. 2. Scaled CPU timings on the linear wave problem to t = 100. We note that the implicit timings are highly dependent on the tolerance
RTOL.

152 D.R. Reynolds et al. / Journal of Computational Physics 219 (2006) 144–162
As can be seen in the figure, both the explicit and implicit methods retain the original wave profile. It is of
further note that due to the problem stiffness, the implicit method reaches the same solution as the explicit
method in less than one-fifth the number of time steps, although each step requires slightly more computa-
tional work.

We note that tests corresponding to the fast magnetosonic wave and the Alfvén wave, with a variety of ori-
entations to the magnetic field and the mesh, yielded similar accuracy and wave preservation comparisons with
the explicit time method, and are not presented here in the interest of brevity.
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significantly fewer time steps.
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4.2. Magnetic reconnection in 2D

The term magnetic reconnection (MR) refers to the breaking and reconnecting of oppositely directed mag-
netic field lines in a plasma. In this process, magnetic field energy is converted to plasma kinetic and thermal
energy, and occurs in many contexts, including the sawtooth-like oscillations observed in the operation of a
tokamak and in solar coronal events. In MR two regions are generally distinguished: an outer ‘‘inviscid’’
region and an inner ‘‘resistive’’ region, whose width scales as g1/2, where the actual reconnection process takes
place. Of considerable interest in the reconnection problem is the speed at which the reconnection occurs (the
reconnection rate) and its variation as a function of the magnetic resistivity g or Lundquist number S. For sin-
gle-fluid resistive MHD, the reconnection rate for unforced reconnection should scale proportionally to the
inverse square root of the Lundquist number, a dependence known as the Sweet–Parker scaling [32]. During
reconnection, the process is characterized by a thin current layer whose thickness scales as S�1/2, which when
fully resolved results in explicit time steps proportional to the square of the local mesh spacing for an explicit
method. Therefore, the computational time required for an explicit simulation to complete the reconnection
process is expected to scale as S3/2. As a result of the wide literature base on this problem, it is well-suited for
testing the implicit solutions against known results. Moreover, due to the increasing stiffness of the problem, it
is an ideal example for evaluating the efficiency improvements through using our implicit approach.

We have carried out simulations of MR in an idealized canonical 2D setting. The initial conditions consist
of a perturbed Harris sheet configuration as described in Birn et al. in [31] (the GEM magnetic reconnection

challenge). In this problem, the domain of simulation is a 2D box [�12.8,12.8] · [�6.4,6.4], where the charac-
teristic length and velocity scales chosen are the ion inertial length and the Alfvén speed. It is clear that for
single fluid MHD, the ion inertial length is not a meaningful quantity. Nonetheless, the simulation domain
is chosen to be of the same size as in the GEM challenge. The boundary conditions are periodic in the x-direc-
tion with perfectly conducting wall boundary conditions in the y-direction. The non-dimensional parameters
are chosen to be S = 200, Re = 20, and Pr = 0.7.

In Fig. 4, we plot snapshots of the current density J = $ · B, showing the time evolution of this 2D recon-
nection process. The initial state is given in the upper-left corner. As time proceeds (to the right), we see the
formation of the thin reconnection layer in the center of the domain, indicative of resistive reconnection [32].

Two necessary features of numerical methods for MHD equations are retention of the solenoidal property
of the magnetic field and satisfaction of conservation laws. As most often posed, the MHD equations imply,



Fig. 4. Progress of the current field in time, exhibiting the magnetic reconnection. Time progresses from upper left to lower right. Note the
progressive decrease of the maximum current value, as seen in the color-bar scales to the right.
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but do not specifically enforce, the constraint that $ Æ B = 0, which is required for solution of Maxwell’s equa-
tions. As a result, in numerical schemes where this constraint is not enforced, significant errors may be intro-
duced into the magnetic field, resulting in a parallel Lorentz force and eventually contaminating the solution
of all model variables. Similarly, conservation of energy is violated in numerical methods which do not solve
the equation for total energy per unit volume, instead relying on an alternative non-conservative form of the
energy equation using either the temperature or the pressure field. Through use of explicit methods in diver-
gence form, conservation is guaranteed, and for suitably chosen fluxes, $ Æ B = 0 is also guaranteed through
time. However, as implicit methods rely on a solver as opposed to explicit updates, such guarantees are no
longer valid in general. In Fig. 5, we see that when given a solenoidal initial condition, our numerical methods
retain the divergence-free magnetic field to numerical precision. Moreover, our numerical methods are conser-
vative, as shown in Fig. 6, where we see precision-level variation in relative energy and mass levels over time.
We note that these properties hold as a result of our Newton–Krylov methodology, and could be violated for
other solution approaches.

We also use this example to compare simulation with theory, in order to check the correctness of the com-
puted solutions. In Fig. 7, we plot the reconnection rate history for both the explicit and implicit time stepping
schemes for a variety of Lundquist numbers. We note that although the implicit method uses significantly lar-
ger time steps, the computed histories of the reconnection rate are identical. More importantly, we also see
that these rates satisfy the theoretical Sweet–Parker scaling in Fig. 8, where the maximum reconnection rates
are plotted with respect to S�1/2.

In addition to producing the correct results, we would like to see an efficiency benefit to using the implicit
method for this stiff problem, since it is no longer constrained by the explicit time step stability limit. Fig. 9
shows the scaled run times required by the explicit and implicit methods to reach a physical time of t = 50,
over a range of spatial discretizations. We see that when including the stiff diffusive effects of the full resistive
MHD system (2.1), the implicit approach demonstrates significant runtime improvement over the explicit-time
scheme. For these tests, the average explicit and implicit time steps were {2.9, 1.5, 0.75, 0.37} · 10�2 and {6.7,
5.7, 5.6, 5.9} · 10�2, from the coarsest to finest discretizations, respectively.

We also comment on the additional curve showing the scaled run time for the implicit method without use
of the explicit-time predictor. This curve shows significantly hirer run times than the implicit method with the
predictor. Without use of the predictor, the Newton method was started with an initial iterate equal to the
previous time solution. We see clearly, that by using the predictor to generate an initial iterate based on a
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higher-order approximation, the implicit method will take fewer nonlinear iterations per time step and thus
scale with a much better efficiency.

We note that although the above implicit time step sizes remain nearly constant, the corresponding run
times grow due to increased solver load. This phenomenon may be understood through Table 2, which shows
general trends of the nonlinear and linear convergence from a number of implicit simulations. The salient fea-
tures in this table are the very slow increase in internal time steps, the decreasing difficulty of the nonlinear
solve, and the increasing difficulty of the linear solve with respect to refining the spatial mesh. We note that
the equivalent explicit method requires doubling the number of time steps with each spatial refinement, while
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the implicit method only increases these slightly as the mesh is refined. We attribute the nonlinear solver con-
vergence to the fact that since more steps are taken, each step is smaller. The result of a smaller step is that the
nonlinear system will be slightly easier and the predictor a little better. As the mesh is refined, however, the
linear Jacobian systems are more difficult to solve due to a correspondence between the matrix conditioning
and the mesh size. As the mesh size decreases, the conditioning of the matrix gets worse, and the linear prob-
lem more difficult. We expect future work in preconditioning to address this issue and remove this perfor-
mance degradation with mesh size.

Lastly, we note that the difference in cost per time step between the explicit and implicit methods is fairly
low for coarse meshes. The differences in cost per time step are partly due to the predictor, but they are also
due to the fact that the linear solves for the implicit method on such a coarse mesh require few iterations and
are thus fast. Also, the explicit method which uses a fourth order Runge-Kutta method requires four evalu-
ations of the nonlinear function per step whereas, Table 2 indicates that the implicit method is taking about
two evaluations per step for the coarse mesh.
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Table 2
Convergence rates attained with the implicit solver for the 2D reconnection problem: all simulations were run to a physical time of t = 100

Mesh RTOL Time steps Newton/time step GMRES/Newton

64 · 32 10�5 1298 1.66 1.37
64 · 32 10�7 1767 1.44 1.25
64 · 32 10�9 2388 1.30 1.16

128 · 64 10�5 1338 1.56 1.90
128 · 64 10�7 1850 1.48 1.63
128 · 64 10�9 2385 1.46 1.46

256 · 128 10�5 1438 1.43 2.97
256 · 128 10�7 1903 1.25 2.84
256 · 128 10�9 2427 1.21 2.37

512 · 256 10�5 2197 1.37 4.06
512 · 256 10�7 3325 1.04 4.02
512 · 256 10�9 2622 1.23 4.16

Equivalent explicit runs on the four meshes required 3404, 6647, 13287 and 26574 time steps, respectively.

D.R. Reynolds et al. / Journal of Computational Physics 219 (2006) 144–162 157
4.3. Pellet injection

An experimentally proven method of refueling tokamaks is through pellet injection [33,34], which is cur-
rently seen as the most likely refueling technique for ITER, a next-generation fusion reactor currently under
design. In this refueling process, small frozen deuterium pellets (Oð103–104Þ times smaller than the reactor) are
shot into the plasma at high velocity (from 300 to 1000 m/s). Simulations are required to understand the MHD
processes that cause redistribution of the pellet mass in the tokamak. These pellets get rapidly heated by long
mean-free-path electrons streaming along magnetic field lines, leading to ablation at the frozen pellet surface
with a shield of neutral gas and an ionized high-density plasma cloud around it. This forms a local high-b
plasmoid, which implies a localized region of high pressure that can trigger MHD instabilities. Fully resolving
the high density cloud around the pellet leads to extremely small time steps in explicit simulations, as a result
of the large toroidal guide field typically present in a tokamak. For such methods, simulation of the full pellet
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ablation and mass redistribution processes thus requires Oð106–107Þ time steps. However, in simulating such
processes, it is not necessary to resolve the motion at time scales corresponding to fast magnetosonic speeds,
but rather resolve the much slower motion of the ablated pellet cloud with a reasonable amount of accuracy
and precision. Due to such problem stiffness, it is therefore desirable to have an implicit time stepping method,
which may exceed the explicit step restriction and proceed at the time scale relevant to the pellet motion and
ablation.

In this example, we do not simulate the full pellet injection process in a tokamak. Instead we use a model
problem containing many of the time scale separations found in the original problem, albeit in a 3D Cartesian
box domain instead of a toroidal domain. We choose this model problem in order to illustrate the implicit
method in a 3D domain on a problem of interest with a large span of time scales, before extending these meth-
ods to the curvilinear meshes required for tokamak geometry. Following Samtaney et al. [35], our mathemat-
ical model consists of the single-fluid, resistive MHD equations with additional source terms to model the
mass injected into the system by the pellet and a source term in the energy equations to model electron heating,
which, in this example is instantaneous. In addition to these source terms, the model includes a variable for the
pellet radius and an evolution equation for the ablation processes. Writing the pellet radius as rp, the pellet
ablation contributions to the density and energy as Sq and Se, respectively, and the rate of pellet ablation
as Srp , the model may be written
oU
ot
þr � F ðUÞ ¼ r � F dðUÞ þ SðUÞ: ð4:1Þ
Here, the solution vector is now U = {q, qu, B, e, rp}T, and the vectors F(U), Fd(U) are the same as in (2.1),
augmented with identically zero extra entries corresponding to the equation governing the pellet radius rp. The
source term S(U) is given by
SðUÞ ¼ fSq; 0; 0; Se; Srpg
T
:

The ablation rate of the pellet, originally derived by Parks and Turnbull [36] and modified for hydrogen pellets
by Kuteev [37] is given as (in atoms/s)
_N ¼ �4pr2
p

drp

dt
2nm ¼ 1:12	 1016n0:333

e T 1:64
e r1:33

p M�0:333
i ; ð4:2Þ
where ne is the background plasma density in cm�3, Te is the background plasma electron temperature in eV,
Mi is the atomic mass number in atomic units, and nm = 2.63 · 1022/cm3 is the molecular density of frozen
hydrogen. The density source term arises from the ablation of the pellet and is written in terms of number
density, (i.e., atoms per unit volume per unit time) as Sn ¼ _Ndðx� xpÞ, where the delta function is approxi-
mated as a Gaussian distribution centered over the pellet with a characteristic size equal to 10rp. The density
source term, Sq, is obtained by expressing Sn in the appropriate non-dimensional form. A useful approxima-
tion that eliminates the electron timescale from the problem is to consider the electron heat flux as being
instantaneous compared to the other processes being computed. This leads to a source term in the energy
equation, i.e., Se = 3SnT(w), which corresponds to the localized increase in energy due to the heating of the
ablated pellet mass, where T(w) is the temperature of the flux surface. Isosurfaces of w are flux surfaces at
t = 0 as discussed in the next paragraph. It is obvious that the pellet perturbs the magnetic field locally,
and hence the use of T(w) is because of the model ansatz that the perturbation is small.

The following simulations are performed on the 3D box domain, [0,2] · [�1,1] · [�1,1], using periodic
boundary conditions in the z-direction to simulate the toroidal tokamak direction, and perfectly conducting
wall boundary conditions in the x and y directions to approximate the material walls of the tokamak. The
initial condition is a Taylor state given by w(x,y) = w0 sin(2px) cos(2py). The initial magnetic field is given
by B(x,y,z, 0) = $z · $w + g0$z. The constants w0 = 2/p and g0 = 10 result in a magnetic field in the x–y

plane (corresponding to a poloidal plane in a tokamak) approximately one order of magnitude smaller than
the z-component magnetic field (which corresponds to the toroidal component). The non-dimensional param-
eters for the pellet injection simulations were taken to be S = 103, Re = 102 and Pr = 0.7. The pellet radius is
chosen to be 0.0125 times the box size which is an additional simplification to resolve the ablation cloud ade-
quately in this illustrative example. We also note that due to the potential instabilities introduced by the high
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density cloud surrounding the pellet, the following results use fluxes computed with the tuned second-order
scheme discussed in Section 3.1.

In Fig. 10, we see the resulting pellet motion and ablation from these simulations. In this figure, we see the
pellet source is strongest in the area of largest density. The time history of the total kinetic energy, shown in
Fig. 11, shows a large increase in kinetic energy due to the ablated mass motion along the field lines. More-
Fig. 10. Time sequence of density for pellet injection from top left to bottom right, at times t = {0.8, 9.8, 20.2, 40.0}.
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over, we see that the implicit method exactly matches the kinetic energies produced by the original explicit
method.

As previously mentioned, we present this pellet injection example to test the efficiency of the fully implicit
approach on a 3D problem that exhibits physical aspects of scientifically interesting problems. These results
are shown in Fig. 12, in which we again plot the scaled CPU time per spatial mesh point at varying spatial
resolutions. We see that although the implicit method proves significantly slower for low-resolution problems,
it overtakes the explicit method as the mesh is refined toward more reasonable spatial accuracies. In each of
the four examples, we used a uniform discretization of the domain in each direction and increased the number
of processors to maintain a uniform data-per-processor ratio (i.e., 1, 8, 64, 256 processors for the four reso-
lutions), so the timings shown include inter-processor communication. For these simulations, the average
explicit time steps were {10.5, 5.3, 3.3, 1.7} · 10�4, while the average implicit time steps were {5.1, 4.8, 3.6,
3.5} · 10�4 for each of the four resolutions.

5. Conclusions

As shown in the above computational results, the fully implicit method from Section 3 results in an accurate
and stable method. The fourth-order central difference spatial approximation provides a high level of accuracy
for the problems from Section 4, which do not exhibit strong shocks or sharp solution interfaces. As a result of
the highly accurate predicted solution and tuned implicit solver, the overall scheme reproduces the same level
of solution accuracy as comparable explicit schemes, in significantly less time for these stiff MHD problems.
Moreover, as demonstrated in the 3D pellet injection example from Section 4.3, this solution machinery is
fully parallel and scales better with problem size than standard explicit-time approaches.

In addition to the efficiency benefits, this implicit approach retains the physicality of its solutions by satis-
fying the underlying conservation laws and retaining the solenoidal property of the magnetic field. Further-
more, the code correctly computes single fluid magnetic reconnection, for initial conditions specified by the
GEM challenge problem, and satisfies the theoretical Sweet–Parker scaling of reconnection rate with respect
to the Lundquist number.

We note that such implicit approaches are not ideal for all problems. For physical systems which exhibit
strong shocks or gradients, special techniques must be used for computation of fluxes at cell faces; these tech-
niques are often non-differentiable and as a result may pose convergence problems for implicit methods.
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Moreover, as the implicit solver framework involves increased computational effort per time step over explicit
methods, efficiency gains as shown in Section 4 will only be realized on sufficiently stiff problems, in which the
relevant dynamic time scale is much larger than the time scale imposing the explicit stability restriction.

We further note that we did not use preconditioning techniques within the iterative linear solves in this
work, though we still realized significant improvements over the explicit-time method. This improvement
on the reconnection and pellet injection problems resulted from the time stepping approach, which can remain
stable even while taking time steps larger than what the CFL condition would allow. Moreover, unlike implicit
approaches that strive to take the largest time steps possible, placing all of the solution work on the nonlinear
and linear solvers, this method guarantees a desired level of time integration accuracy while attempting to take
the solution burden off of the nonlinear and linear methods by solving only as precisely as is needed to main-
tain the requested accuracy. We anticipate that incorporation of fast and effective preconditioning techniques
will allow further efficiency improvements over explicit time methods as the meshes are refined, as evidenced in
Table 2 by the increasing number of Krylov iterations per Newton iteration as the mesh size is decreased. The
construction of such methods will be the subject of future work.
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